
ViReC PROJECT:

LABORATORY WORK FOR COMPUTER ARCHITECTURE-

THE INSTRUCTION SET OF A SIMPLE PROCESSOR VIP8

Oleg Cernian, Eugen Dumitrascu,
Adrian Neatu, Dumitru Ingeaua, Cornel Mitroi

University of Craiova
Faculty of Automation, Computers and Electronics

5, Lapusului Road, Craiova, Romania

Timothy Hall
ECE Department, University of Limerick

Limerick, Ireland

Abstract: The basic idea developed in the
"ViReC e-Initiative" project, which is a component
of MINERVA scheme, consists in realizing some
virtual on-line labs. Computer Architecture
discipline is one of the most important disciplines
for students attending the strand of computer
specialization. A set of specific laboratory
assignments was proposed for this discipline.

One of the designed laboratory works is entitled
"The instruction set of a simple processor VIP8". It
is based on the structure of a hypothetical simple
processor called VIP8. The structure of the
computer that uses this kind of processor is similar
to the Elementary Digital Computer presented at
the course. In this paper it is discussed the
functioning model of the processor and the
instruction set incorporated.

The students can use a simulator of this
processor with which they can write programs in
the machine code language, visualize the execution
of the instructions including step-by-step mode,
display the configurations of internal registers.

The execution of each instruction of the
processor was detailed in steps and presented in the
animated form of a short movie.

Also, the simulator offers the possibility to run
examples of already written programs, exhibiting
thus a powerful tool to students for writing their
own applications.

Keywords: ViRec project, Minerva Scheme, Processor
VIP8, Computer Architecture, Elementary Digital
Computer

1. THE DESCRIPTION OF THE ELEMENTARY
COMPUTER STRUCTURE

It is considered the structure of a very simple digital
computer consisting of only 4 units: Arithmetic Logic
Unit (ALU), Control Unit (CU), Memory Unit (MU)

and Input/Output Unit (I/O U). The link between these
units is realized by two buses: Address Bus on 16 bits and
Data Bus on 8 bits.

Arithmetic Logic Unit (ALU)

ALU consists of two distinct areas: the processing
device and the group of local registers. Two arithmetic
operations are implemented on 8 bits: addition and
subtraction. The set of registers in the following: A
(accumulator), B, C, H, L (general registers), PSW (flag
register), all on 8 bits and SP (stack pointer) on 16 bits.
Some of these registers are grouped in pairs, like HL and
BC.

The pair HL can be used for implicit addressing of
memory, as in this pair of registers is inputted the memory
address. The flag register PSW contains the following
flags: CY (Carry), Z (Zero), P (Parity), S (Sign).

Beside visible registers, there are provided two
additional working registers, designed W and Z, that are
used in implementation of arithmetic operations and are
not directly accessible to the user.

Control Unit (CU)

CU contains the instruction register (IR) on 8 bits,
program counter (PC) on 16 bits, which gives the next
instruction address that is to be executed, the control
block, which generates the commands to all other units for
implementation of the function, and a logical decoder that
decodes the opcode of the instruction ensuring the
interpretation of the current instruction.

Memory Unit (MU)

MU contains a memory block of 64 Kbytes (216

memory locations, each location of 8 bits). The range for
the memory addresses is from 0 up to 216-1. MU contains
also two functional registers: Memory Address Register
(MAR) on 16 bits and Memory Buffer or the Data
Register of the Memory on 8 bits.

Input/Output Unit (I/O U)

The I/O unit consists of max 256 I/O ports, where
the number of the ports is belonging to the interval [0,
255]. Each port is considered a register on 8 bits. The
input/output ports are communicating with the
processor through the 8 bit Data Bus for data
transmission, while addressing is realized through the
16 bit Address Bus.

The operation of this structure is realized
sequentially congruous to von Neumann’s principles.

2. PRESENTATION OF THE INSTRUCTION
SET

The instruction set adopted for the processor is
divided into the following five groups:

1) Data Transfer Group
2) Arithmetic Group
3) Logical Processing Group
4) Branch Group

5) Stack, I/O and Machine Control Group

Each group consists of a number of specific
instructions realising a particular operation in a
determined sequence of steps.

For each instruction it is assigned a particular
mnemonic that is very common. The list of all mnemonics
is depicted in Fig. 5.

3. DETALIED INSTRUCTION EXECUTION

The execution of instructions of the processor VIP8 are
presented in a detailed manner in a graphical mode created
in Macromedia Flash. For each instruction the student can
set the values of some registers or memory locations and,
afterwards, he/she can view all the steps of the execution,
which can be framed in subphases.

In the next figure there is presented the instruction
cycle for “MOV A, H” instruction. It obviously belongs to
the Data Transfer Group. The instruction ensures the
transfer of the content of the register H into the register A:

Fig.1. Capture of the execution of instruction MOV A, H

The student can preset the value of the register H
(the sender register) before starting the instruction
cycle. This value must be formed only of 0-s or 1-s
(binary digits). After that running of the entire
instruction is initiated comprising the steps of the
”fetch phase” and “execute phase”.

After the settings are completed, the fetch phase
begins. The content of PC (Program Counter) is
transferred using the ADR BUS (Address Bus) into the
register MAR (Memory Address Register). The Read
command is issued by the Control block from the CU
and a Read Cycle is started ensuring reading of the
memory array at the location pointed by the content of
MAR. The read group of 8 bits corresponds to an
instruction, which is saved in the register MBR, from
which it is sent to the Instruction Register (IR). The
content of IR (Instruction Register) is decoded by the
“DECODER”. The Control Block will increment the

PC to point to the next instruction to be fetched and the
process switches to the execute phase. In this phase the
content of the register H will be transferred into the
register A. After this operation the instruction ends, and
normally a new fetch phase will be initiated, in the next
instruction cycle.

After execution of "MOV A, H" instruction it can be
seen that the content of the Accumulator becomes
identical to that the register H. The content of H is not
lost.

Another instruction from the Data Transfer Group to
be described is LXI H, d16, where d16 represents a 16 bit
word (data). This instruction loads the register pair HL
with d16, which is included in the instruction itself. As it
is known, since data is associated to the instruction, such
instructions are called immediate. Obviously, the length of
this kind of instructions is three bytes.

Fig.2. Capture of the execution of instruction LXI H,d16

The evolution of execution of this instruction, as
seen by the students, is as follows: after the settings are
ready, it is started the fetch phase. The content of PC
(Program Counter) is transferred into MAR (Memory
Address Register) using the ADR BUS (Address Bus).
After reading the content of the addressed location, the
first byte of the instruction is transferred into the IR.
The content of IR (Instruction Register) is decoded by
the “DECODER”. The Control Block is acknowledged
that it is a three byte instruction. The Control Block
increments the PC and it is continued the fetch phase.

The next two bytes of the instruction are read from
the memory and are transferred in the working registers

Z and W. After each fetch action the content of PC is
incremented.

After that, the process is switched to execute phase.
The content of the pair WZ is transferred into the pair HL
in two steps (the internal bus is on 8 bits), 8 bits at once.

Thus, eventually the content of the pair HL became
equal to the 16 bits specified in the instruction.

Let us consider another instruction from the Data
Transfer Group, namely MVI A. This instruction ensures
loading of an 8 bit immediate data, given in the
instruction, into the Accumulator.

Fig.3. Capture of the execution of instruction MVI A

The student can set the value of the data associated
to the instruction (the immediate data) before starting
the instruction cycle. This value must be formed only
of 0-s or 1-s (binary digits). After that he/she can start

the presentation of the instruction respecting all the steps
of the ”fetch cycle” and “execute cycle”.

After fetching the first byte from the memory and
decoding it the Control block is acknowledged that it is a
two-byte instruction. Therefore, a new "read memory"

cycle is initiated and the second byte of the instruction
representing the immediate data is fetched into MBR
from where it is transferred into the working register Z.
After this operation, the Control block increments
again the PC and the instruction cycle passes into the
execute phase. In this phase the 8 bit data from the
register Z is transferred into the register A.

From the Arithmetic Group it was selected
presentation of the ADD H instruction. This instruction
adds the content of the register H with the content of
Accumulator and stores the result into the Accumulator,
by changing correspondingly by the content of PSW.

Fig.4. Capture of the execution of the instruction ADD H

Step-by-step execution of the instruction “ADD H”:
firstly, it is started the fetch phase, so that the content
of PC (Program Counter) is transferred through the
ADR BUS (Address Bus) into the Memory Address
Register. After that the Read command is issued and
the location specified by the content of MAR is read
and the corresponding word is placed into MBR, from
which it is transferred into IR. The content of IR
(Instruction Register) is decoded by the “DECODER”.
The Control Block increments the PC and it is initiated
the execute phase. In this phase the content of A is
transferred into the working register W, while the
content of H into the working register Z. After that the
Control Block coordinates the addition of the contents
of these two registers. When the addition is carried out
the sum is stored back into the register A and there are

also changed the flags in PSW register (depending on the
content of A).

4. THE PROCESSOR SIMULATOR

The simulator was created by using the Java
programming language and it was intended to be used
inside a browser window, as a Java applet.

Basically, the operation of the simulator is conceived
as simple as possible. On the main panel, which occupies
the right-most part, the user can choose the instructions to
be used to write programs. On the left part of the interface
there is the status information. The user can see at any
time the values of the internal registers of the processor,
the instructions that were used in the program and the
value of the active port. The interface is depicted in Fig.5.

Fig.5 The simulator interface for VIP8

After writing the program, the user has to press the
“END” button and a new interface will be displayed.

 The new interface is a different one; mainly, the
button panel from the first disappears and is being
replaced by a memory panel. At any instant there can
be visualized the values from 256 locations. But the
addresses can be modified, such that all memory
locations can be inspected (checked).

In order to run the program step by step (that is,
instruction by instruction), the user has to press the
“STEP” button. The current instruction will be
executed and all involved components of the computer
will be changed adequately.

At the end of running the program, the user can return
to the main interface, with the help of the button
“RESET”. All registers will be cleared, as well as the
values of the ports and all memory locations.

There is provided an additional button named DET,
that allows the user to detail furthermore the execution of
an instruction; if the “DET” button is pressed it will open
a new browser window with a Flash made simulating
environment, which presents in full detail how the
instruction is executed internally.

In Fig.6. it is depicted the memory panel inside the
interface:

Fig.6. Debug interface

The application provides also a large variety of
ready made examples. The user can very easily run any
of these demo programs by using another button called
“PRESET”; by pressing this button the following
dialog box appears (Fig.7.).

Fig. 7 Loading a preset sample

There is a list box that allows the user to actually
choose the program that it is wanted. The samples that
can be loaded are listed below:

• Simple Loop - implements a simple conditional
loop

• Arith+Logic - implements some arithmetic and
logic operation

• Loop+IO Port - implements a loop and writes the
result into a port

• I/O Port - implements some operations with ports
• Subcall + Jump - implements a subroutine
• Stack Use - implements simple operations with

stack
• Nested Routines - implements a nested routines

• Multiplication - implements a multiplication between
two operands on 8 bits

• Division - implements a division between two
operands on 8 bits

• Binary to BCD - implements o conversion from
Binary to Binary Coded Decimal

• BCD to Binary- implements o conversion from
Binary Coded Decimal to Binary

• Interchanging two registers - implements a swap
between two registers

• Changing register and memory location contents-
implements a swap between a register and a memory
location

• 2's complement - calculates 2’s complement of a
number

• 9's complement - calculates 9’s complement of a
number

• 10's complement - calculates 10’s complement of a
number

Let us take, for instance, the “Binary to BCD”
conversion sample. After choosing it and after pressing the
button “OK”, all instructions of the program will be
loaded in the simulator memory.

In the next picture (Fig.8.) it is presented the memory
panel showing the memory content for the first 256
locations, the flags and the program itself listed in the
scroll box:

Fig.8. Debug a preset sample

From this point on, the program will be run just like
any other user-made program, with no difference at any
level.

5. OTHER DIRECTIONS OF THE DESIGNED
LABORATORY

Besides the instruction set study the following
subjects linked to different chapters of Computer
Architecture course are under consideration by the
authors:

1) Virtual Memory
2) Cache Memory
3) Memory Addressing Techniques
4) Operation of Stacks
5) Direct Memory Access Block
6) Control of Buses
7) Interrupt handling
8) Pipeline organization

6. CONCLUSIONS

The set of laboratory works envisaged will be used
by the students enrolled in the current activities at the
Virtual University set up within “ViRec e-Initiative”
project. The development is an international endeavor,
where two partners, University of Craiova and
University of Limerick have geared their efforts to
create a set of efficient laboratory works to be remotely
approached by the future students in accordance with
the planned actions.

REFERENCES

Carpinelli J.D., Computer Systems Organization and
Architecture, Addison-Wesley, 2001

Dasgupta S., Computer Architecture – A Modern
Synthesis, John Wiley & Sons, 1989

Hayes J., Computer Architecture and Organization,
McGraw Hill, 1998

Hennessy J., Patterson D., Computer Architecture: A
Quantitative Approach, Morgan Kaufman, 1996

Hill F.J., Peterson G.R., Digital Systems Hardware
Organization and Design (3rd Ed), John Wiley &
Sons, 1987

Laventhal L., Saville W., Z80 Assembly Language
Subroutines, Osborne, Berkeley, Ca, 1983

Mano M.M., Computer Systems Architecture,
Prentice Hall, 1992

Murdocca M.J., Heuring V.P., Principle of Computer
Architecture, Prentice Hall, 2000

Pollard L.H., Computer Design and Architecture,
Prentice Hall, 1990

Stallings W., Computer Organization and
Architecture, Prentice Hall, 2001 (6th Ed)

Stone H., High Performance Computer Architecture,
Addison-Wesley, 1993

